ON A PROBLEM OF EQUILIBRIUM OF ELASTIC HALF-SPACE

(OB ODNOI ZADACHE RAVNOVESIIA UPRUGOGO POLUPROSTRANSTVA)

PMM Vol.23, No.6, 1959, pp. 1129

I. Sh. RABINOVICH
(Leningrad)
(Received 13 July 1959)

The problem regarding the action, on the boundary of a half-space along an infinite straight line, of normal loading varying in accordance with a linear law, is considered.

Let the boundary of elastic half-space be the plane $x=0$, the x-axis being directed along the internal normal. The loading is distributed along the line $y=0$ in accordance with the law

$$
\begin{equation*}
p_{x}=p_{0} x \tag{1}
\end{equation*}
$$

At the point $(x=\xi, y=z=0)$ we isolate from the distributed loading the elementary force $d P_{\xi}=p_{\xi} d \xi=p_{0} \xi d \xi$. The components of element ary displacement produced by this force, on the basis of Boussinesq's solution ([1], p. 157) are

$$
\begin{array}{r}
d u_{\xi}=\frac{p_{0}}{4 \pi \mu} \frac{(x-\xi) z \xi d \xi}{R_{1}^{3}}-\frac{p_{0}}{4 \pi(\lambda-\mu)} \frac{(x-\xi) \xi d \xi}{R_{1}\left(R_{1}+z\right)} \quad\left(R_{1}^{2}=(x-\xi)^{2}+y^{2}+z^{2}\right)(2) \\
d v_{\xi}=\frac{p_{0}}{4 \pi \mu} \frac{y z \xi d \xi}{R_{1}^{3}}-\frac{p_{0}}{4 \pi(\lambda+\mu)} \frac{y \xi d \xi}{R_{1}\left(R_{1}+z\right)}, \quad d w_{\xi}=\frac{p_{0}}{4 \pi \mu} \frac{z^{3} \xi d \xi}{R_{1}^{3}}+\frac{p_{0}(\lambda+2 \mu)}{4 \pi \mu(\lambda+\mu)} \frac{\xi d \xi}{R_{1}}
\end{array}
$$

Integrating expressions (2) in the range of variation of $\boldsymbol{\xi}$ form $-\infty$ to $+\infty$, we obtain the solution of the formulated problem in terms of components of displacements:

$$
\begin{gather*}
u=\frac{p_{0}(\lambda+2 \mu)}{2 \pi \mu(\lambda+\mu)} z \ln r+\frac{p_{0}}{2 \pi(\lambda+\mu)} y \operatorname{arctg} \frac{z}{y}+\frac{p_{0} z}{2 \pi \mu} \quad\left(r^{2}=y^{2}+z^{2}\right) \\
v=\frac{p_{0}}{2 \pi \mu} \frac{x y z}{r^{2}}+\frac{p_{0}}{2 \pi(\lambda+\mu)} x \operatorname{arctg} \frac{z}{y}, \quad w=\frac{p_{0}}{2 \pi \mu} \frac{x z^{2}}{r^{2}}-\frac{p_{0}(\lambda+2 \mu)}{2 \pi \mu(\lambda+\mu)} x \ln r \tag{3}
\end{gather*}
$$

From here it is easy to obtain the relationship for the components of stress

$$
\begin{gather*}
X_{x}=\frac{2 p_{0} \sigma}{\pi} \frac{x z}{r^{2}} \quad X_{y}=\frac{p_{0}}{\pi} \frac{y z}{r^{2}}+\frac{p_{0}(1-2 \sigma)}{\pi} \operatorname{arctg} \frac{z}{y}, \quad Y_{y}=-\frac{2 p_{0}}{\pi} \frac{x y^{2} z}{r^{4}} \\
Y_{z}=-\frac{2 p_{0}}{\pi} \frac{x y z^{2}}{r^{4}}, \quad Z_{z}=-\frac{2 p_{0}}{\pi} \frac{x z^{3}}{r^{4}} \quad Z_{x}=\frac{p_{0}}{\pi} \frac{z^{2}}{r^{2}}+\frac{p_{0}(1-\sigma)}{\pi} \tag{4}
\end{gather*}
$$

Here σ is Poisson's ratio.
The solution of Flamant for the case when the intensity of the dism tributed loading is equal to p_{0}, has the following form in our notation in terms of the components of displacement [1]

$$
u^{\circ}=0, \quad v^{\circ}=\frac{p_{0}}{2 \pi \mu} \frac{y^{z}}{r^{2}}-\frac{p_{0}}{2 \pi(\lambda+\mu)} \operatorname{arctg} \frac{y}{z}, \quad w^{\circ}=-\frac{p_{0}}{2 \pi \mu} \frac{y^{2}}{r^{2}}-\frac{p_{0}(\lambda+2 \mu)}{2 \pi \mu(\lambda+\mu)} \ln r(5)
$$

By means of elementary transformations these expressions are reduced to the form

$$
\begin{equation*}
u^{\circ}=0, \quad z^{\circ}=\frac{p_{0}}{2 \pi \mu} \frac{y z}{r^{2}}+\frac{p_{0}}{2 \pi(\lambda+\mu)} \operatorname{arctg} \frac{z}{y}, \quad w^{\circ}=\frac{p_{0}}{2 \pi \mu} \frac{z^{2}}{r^{2}}-\frac{p_{0}(\lambda+2 \mu)}{2 \pi \mu(\lambda+\mu)} \ln r \tag{6}
\end{equation*}
$$

The following components of stress ([1], p. 207) correspond to these displacements

$$
\begin{equation*}
X_{x}^{\circ}=\frac{2 p_{0} \circ}{\pi} \frac{z}{r^{2}}, \quad Y_{y}^{\circ}=-\frac{2 p_{0}}{\pi} \frac{z y^{2}}{r^{4}}, \quad Y_{z}^{\circ}=-\frac{2 p_{0}}{\pi} \frac{y z^{2}}{r^{4}}, \quad Z_{z}^{\circ}=-\frac{2 p_{0}}{\pi} \frac{z^{3}}{r^{4}} \tag{7}
\end{equation*}
$$

Comparing the obtained solution (3) and (4) with the Flamant solution (6) and (7) we note the following:

$$
v=v^{\circ} x, \quad w=w^{\circ} x, \quad X_{x}=X_{x}^{\circ} x, \quad Y_{y}=Y_{y}^{\circ} x, \quad Z_{z}=Z_{z}^{\circ} x \quad Y_{z}=Y_{z}^{\circ} x
$$

The analogy between the two problems is not limited by this. In Flamant's problem $u^{0}=0$ indicates the presence of a plane state of strain. In our problem $u \neq 0$, but $d u / d x=0$, the linear deformation is absent along the x-axis, all planes $x=$ const are equally displaced.

It should be noted that the problem considered may be also be solved by the method of Gutman, suggested especially for problems with a linearly varying loading [2].

BIBLIOGRAPHY

1. Leibenzon, L.S., Kurs teorii uprugosti (A Course on the Theory of Elasticity). 1947.
2. Gutman, S.G. , Some problems of the statics of large dams in the light of laboratorial model research. Extrait du Sixième Congrès de Grands Barrages, New York. 1958: Paris. Imprimerie Gauthier Villars.
