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The problem regarding the action, on the boundary of a half-space along 

an infinite straight line, of normal loading varying in accordance with 

a linear law, is considered. 

Let the boundary of elastic half-space be the plane x = 0, the x-axis 

being directed along the internal normal. The loading is distributed 

along the line y = 0 in accordance with the law 

P3; = PO” (1) 

At the point (X = t. y = t = 0) we isolate from the distributed load- 

ing the elementary force dP 
c- 5 

- p dt$= p&de. The components of element- 

ary displacement produced by this force, on the basis of Boussinesq’s 

solution (11 I, p. 157) are 

Integrating expressions (21 in the range of variation of 5 form - 00 
to+ 00‘ we obtain the solution of the formulated problem in terms of 

components of displacements: 

PO @ + 2ti) 
u = 2np (A + p) z In r + 2% tip”, p) Y arc tg $+E (r2 = y2 + 22) 

,=Poryz 
27q.k r= + 2n (I$ p) x arctg $, 

PO xza wL’=- -- 
27~~ r2 

P”(h+2p) zlnr (3) 
27cp (A -!- t*) 

From here it is easy to obtain the relationship for the components of 

stress 

x _ 2PoG x= 
a?--- ?F r2 

x,.._& i$F+P+24 arc tg $, y 
ll 

2Pll XYQ _ 
z n r4 

y = 2Po XYZS 
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?F I.4 

z, = _ ?$ x!i3 z,=po za PO (I- 0) 
x 7” ‘x (4) 
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Here u is Poisson’s ratio. 

The solution of Flamant for the case when the intensity of the dis- 

tributed loading is equal to PO, has the following form in our notation 
in terms of the components of displacement [ 1 1 

u” = 0, vo=L:poyz 
r2 -xx &?+ rL) arc, tg -f-, 

PO Y2 
27v w”=- 2%7- ZTcP((h$P) 

PO (A + %I In p @) 

By means of elementary transformations these expressions are reduced 

to the form 

tP=o PO 
t $2 = $$- $- + 2X fh + F) arc tg t, PO z2 PO (A + 2P) 

w” = T& 7 - 27q.i (h + &L) lnr (6) 

The following components of stress ([ 1 3, p. 207) correspond to these 

displacements 

x &E.c 2Po YZ2 2Po zs 
x 15 r2’ 

y .__2p,zyz 
Y n r4 ) 

Y,"1=: -Q- r4r z,o = - - 7 
7c r (7) 

Comparing the obtained solution (3) and (41 with the Flamant solution 
(6) and (7) we note the following: 

v = VOX, w = W”X, x, = Xx0x, Y, = Yy%, z, = Zz”x Y, = Y,“x 

The analogy between the two problems is not limited by this. In 

Fl amant’ s problem no = 0 indicates the presence of a plane state of strain. 

In our problem u f 0. but du/dr = 0, the linear deformation is absent 

along the n-axis, all planes x = const are equally displaced. 

It should be noted that the problem considered may be also be 

by the method of Gutman.suggested especially for problems with a 

varying loading [ 2 1. 
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